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Abstract
This paper examines the recovery of liquid from stable overflowing foams.
The foams are formed by bubbling gas into the bottom of a column and the
liquid is collected from the foam that flows over the lip at the top. The paper
demonstrates, using a foam drainage equation, that the recovery of liquid will
rapidly decrease towards an asymptotic value as the foam height is increased.
An expression for this liquid recovery is then developed. That the liquid
recovery becomes constant as foam height is increased in a stable foam is
also demonstrated experimentally. The mathematical analysis of the problem
suggests that the amount of liquid collected is proportional to the gas rate
squared. This relationship is verified experimentally for an aqueous foam.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Flowing columns of foam are found in many industrial applications, including foam
fractionation, column froth flotation and foam stripping columns. One of the key parameters in
any of these processes is the rate at which water moves up the column and overflows the top of
the column. In froth flotation, for instance, the amount of undesired material that is collected
is usually directly proportional to the amount of water collected. This makes the calculation
of this recovery crucial to the prediction of the performance of this system. A second type
of system in which the foam will display a very similar behaviour is if the foam is pumped
around a pipe network which contains a vertical section followed by a horizontal pipe section.
This paper attempts to predict the recovery, or overflow rate, of liquid.

In this paper the behaviour of a steady-state stable flowing column of foam will be
examined. A stable foam has a surfactant concentration high enough to prevent either bursting
at the top surface or internal coalescence. Later in the paper, the restriction of bursting at the
top surface will be relaxed.
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2. The mathematical model

The mathematical model that will be used to describe the behaviour of the liquid in, and
overflowing the column is based on the model developed by Leonard and Lemlich (1965) and
independently rediscovered and used by Verbist et al (1996). The model describes a force
balance between gravity, capillary suction and viscous drag in the Plateau borders. If flow is
assumed to be in only the vertical direction, the velocity of the liquid in the Plateau borders of
the foam can be expressed as follows (positive direction is upwards):

vl = −k1 A − k2√
A

d A

dy
+ vg . (1)

The inclusion of the gas velocity makes this equation the one-dimensional version of the
two-dimensional model developed for flowing foams by Neethling et al (2000). In equation (1),
vl and vg are the velocities of the liquid and gas respectively, A is the cross-sectional area of
the Plateau border at a given height y and k1 and k2 are combinations of physical parameters:

k1 = ρg

3CP Bµ
(2)

k2 =
(√√

3 − π
2

)
γ

6CP Bµ
. (3)

In equations (2) and (3) ρ, γ and µ are the liquid density, surface tension and viscosity
respectively. CP B is the Plateau border drag coefficient. The drag coefficient has a value of
about 50 when the liquid–gas interfaces of the Plateau border are immobile, with the value
decreasing as the mobility increases.

More complex models that include the effects of viscous losses in the vertices as well as
in the Plateau borders (Koehler et al 1999, Neethling et al 2002) can also be used, but their
complexity makes the examination of the basic phenomena occurring within a flowing column
more difficult.

2.1. Continuity in a flowing column

In this study, the overflowing foam column problem will be treated as one dimensional. Figure 1
illustrates the physical situation.

If it is assumed that the column of foam is at steady state, then continuity in the foam can
be expressed by the following equation:

d(vl Aλ)

dy
= −Q Remove. (4)

In equation (4), λ is the length of Plateau border per volume of foam, and is proportional
to (bubble diameter)−2. λ also allows for the calculation of the liquid content of the foam
(ε = Aλ). Q Remove is the volumetric rate of removal of liquid from the foam per volume of
foam. Below the overflow lip, the rate of liquid removal is, of course, zero, as the net flow
through the column at any height is the same.

The system must be considered in two parts; the large proportion of the foam below
the overflow lip, flowing upwards, and the smaller portion of the foam above the lip, which
overflows and carries liquid with it.

2.2. Foam below the overflow lip

In the portion of the foam below the lip, there is no liquid removal or addition other than
through the lower and upper boundaries, and there is a single liquid flowrate Ql .
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Figure 1. Schematic diagram of the flowing foam column.

In this part of the foam, the superficial liquid velocity can be expressed as follows:

Ql

AColumn
= λ

(
−k1 A2 − k2

√
A

d A

dy
+ vg A

)
. (5)

This can then be rearranged:

d A

dy
= −λk1 A2 + λvg A − Ql

AColumn

λk2

√
A

. (6)

To solve for the Plateau border area, A, with height, a boundary value for A at the liquid–foam
interface is required. The following relationship holds:

AInter f ace = εInter f ace

λ
. (7)

εInter f ace is the liquid fraction of the foam at the foam–liquid interface. If the foam is
assumed to be close packed and mono-dispersed, as in this work, then εInter f ace ≈ 0.26. If
it is assumed that the bubble packing at the interface is random and mono-dispersed, then
εInter f ace ≈ 0.36.

The liquid flowrate is a boundary condition which must be consistent with the result for
overflowing portion of the foam. This can be determined by iteration.

2.3. Foam above the overflow lip

The portion of the foam above the overflow lip is more complex to describe, since the liquid
flowrate is not constant, as liquid is removed as the foam flows over the lip. It will be assumed
that the liquid flows over the lip at the same horizontal velocity as the gas, and can thus be
expressed as follows:

Q Removal = vg(out)llip Aλ

AColumn
. (8)

In equation (8), llip is the column circumference and vg(out) is the horizontal velocity of
gas over the lip.
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While any arbitrary horizontal liquid flow profile can be assumed, it will here be assumed
that the horizontal gas velocity over the lip is constant with height. If the height of the foam
above the lip is hOver f low (figure 1), then, since none of the bubbles burst at the top surface,
the horizontal gas velocity is given by

vg(out)lliphOver f low = vg(in) AColumn . (9)

Thus equation (8) becomes

Q Removal = vg(in) Aλ

hOver f low

. (10)

The vertical gas velocity at any height above the overflow lip is given by

vg = vg(in)

h f oam − y

hOver f low

. (11)

In equation (11), y is the distance above the liquid–foam interface and h f oam is the total height
of the foam. Equation (11) allows equation (1) to be re-written as

vl = −k1 A − k2√
A

d A

dy
+ vg(in)

h f oam − y

hOver f low

. (12)

Substituting equations (10) and (12) into the continuity equation (4) and expanding, while
assuming that bubble size, and thus λ, remains constant with height,

d2 A

dy2
=

−2k1 A dA
dy − k2

2
√

A
( dA

dy )2 + vg(in)
h f oam−y
hOver f low

dA
dy

k2

√
A

. (13)

Equation (13) describes the Plateau border area, and hence the liquid fraction, between
the overflow lip and the top of the foam. Both the value and gradient of A at the inlet to this
region are required; these are obtained by integration of equation (6).

The final boundary condition required to fully describe the system is the top surface of the
foam. Since no liquid or gas flows through the top surface, equation (1) yields the following
condition:

AT op = −
(

k2

k1

(
d A

dy

)
T op

)2/3

. (14)

2.4. Solution method

A suitable solution strategy is to iterate on the liquid flow rate in the foam below the overflow lip
(equation (6)), which gives the Plateau border area and gradient at the height of the overflow lip.
Solving equation (13) gives values for A and its gradient at the top surface. This is repeated
until the boundary condition (equation (14)) is met, and the overflow liquid rate becomes
known.

3. Typical results from the model

In this section the properties of a typical numerical solution for a foam with a constant bubble
size and overflowing the lip of a cylinder will be discussed, using the physical conditions given
in table 1.

The physical constants chosen here are typical of foam systems previously studied
(Neethling et al 2002). The choice of the liquid fraction at the interface being that of close
packed spheres was arbitrary and does not significantly influence the results shown, except for
very shallow foams. The drag coefficient of 30 is approximately that obtained by doing forced
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Figure 2. A typical profile of liquid fraction with foam height for a stable, overflowing foam as
obtained from the numerical solution of the model.

Table 1. Typical operating conditions.

Column diameter, dcolumn (cm) 2.5
Foam height from interface to top surface, h f oam (cm) 22
Foam height above overflow lip, hover f low (cm) 2
Bubble diameter, db (mm) 1.5
Volumetric gas flowrate, Qgas (ml min−1) 250
Plateau border drag coefficient, CP B 30
Liquid density, ρ (kg m−3) 1000
Liquid viscosity, µ (Pa s) 0.001
Surface tension, γ (N m−1) 0.0528
Liquid fraction at interface, εinter f ace 0.26

drainage experiments of the type carried out by, for instance, Verbist et al (1996), using the
same surfactant system and bubble size as is presented here. This drag coefficient is less than
the value of about 50 that would be found if the liquid gas interfaces in the Plateau borders
were immobile, indicating that there is a certain amount of surface mobility in this system.

Figure 2 shows the variation in liquid fraction, ε, with foam height predicted by the
model. This trend is typically observed for a very wide range of conditions, and will be
discussed generically.

What is immediately evident from figure 2 is that, in the foam below the overflow lip, the
sign of the second derivative of liquid fraction (and, for invariant bubble size, A) with respect
to foam height changes from being positive in the lower portion of the foam to being negative
towards the overflow lip. This is in contrast to the non-overflowing, steady state foams, such
as the equilibrium liquid fraction profile and the steady forced drainage of liquid (Verbist et al
1996), in which both the first and second derivatives asymptote to zero as height increases and
the liquid fraction and A thus approach a constant value. The second derivative also remains
positive in those cases. It is possible to get such an asymptotic solution from equation (6);
however, these do not occur when the region above the lip is included, as will be explained in
the following sections.
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3.1. Minimum liquid content asymptote

Consider a hypothetical, constant bubble size foam experiment in which the upward flowrates
of liquid and gas can be manipulated independently. In this situation, as the foam height
becomes infinite, for any given gas rate, vg , there exists a range of values for Ql , the upward
volumetric flowrate of liquid for which the liquid fraction, ε (and thus Plateau border area, A),
asymptotes to a constant value. This value is obtained from equation (5) by setting the gradient
of A to zero, since it is the asymptotic value that is required:

AAsymptote =
vg +

√
v2

g − 4k1 Ql
λAColumn

2k1
. (15)

Equation (15) appears counter-intuitive in that it implies that the drier the foam, the
greater the liquid flowrate upwards, Ql . This is a result of the capillary suction disappearing
as the asymptote is approached, combined with the fact that the downward effect of gravity is
proportional to A2, whereas the effect of the upward motion of the gas is only proportional to A.
Equation (15) indicates that there is an upper limit to the upward liquid flowrate for which an
asymptotic solution exists. This corresponds to the maximum liquid flowrate (and minimum
liquid content) at which the viscous drag is able to balance gravity without a contribution from
capillary suction. This upper flowrate is given by

Ql(Min. Asymptote) = v2
gλAColumn

4k1
. (16)

The corresponding asymptotic value of A is

AMin. Asymptote = vg

2k1
. (17)

It must be remembered that the maximum flowrate asymptote corresponds to the minimum
liquid content asymptote.

Figure 2 also shows the liquid fraction corresponding to this asymptotic value of A. It
is clear that, for the complete foam, the value of A will drop below the minimum possible
asymptotic value and that Ql will be higher than the maximum for that asymptote. Ql is able
to exceed this value because the capillary suction remains appreciable.

The lower value of A (or ε), and the higher flow rate Ql than the asymptotic values, is a
result of the boundary condition at the top of the foam. If at the level of the lip d A/dy is small,
then d2 A/dy2 will also be small (from equation (13)). If d2 A/dy2 is small, then d A/dy will not
vary much over the top region, which means that dA/dy will remain small. For equation (14)
(the top boundary condition) to be satisfied, dA/dy must already be reasonably negative at the
level of the lip (d A/dy must already be of the same order of magnitude as required to satisfy
the top boundary condition at the level of the lip). This condition cannot be satisfied for values
of Ql that result in a liquid content that asymptotes to a near constant value.

Figure 3 shows examples of hypothetical liquid fraction–foam height profiles that are
obtained if Ql can be varied independently of vg . The profiles show two distinct limits of
behaviour: the asymptotic behaviour described by equations (16) and (17), and values of Ql

at which the foam is completely dry at the lip level. For the full solution that includes the foam
above the lip, Ql cannot be varied independently of vg and the range of Ql values in which the
valid solution exists must fall between the minimum asymptotic value and the limit at which
the foam becomes dry at the lip. This is a remarkably narrow range: for this set of conditions,
less than 1%, and, as will be shown in greater detail in the following section, the maximum
asymptotic value of Ql will generally closely approximate the full, iterative solution. The
sensitivity of the solution to conditions below the lip explains why the estimated liquid flow
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Figure 3. Liquid profiles in the region below the lip if it were possible to vary Ql independently
of vg . Note that the difference between the last asymptotic liquid flow and the flowrate at which
the foam is totally dry at the top is very small.

rate out of the column is virtually independent of the foam height or gas flow profile above the
lip.

4. Solutions for the complete overflowing foam column

4.1. The effect of foam height on liquid recovery

One of the key operational variables in a flowing foam column is the foam height. Figure 4
shows the relationship between foam height and liquid recovery as obtained from a full
numerical solution of the model, for two foam heights above the lip. The foam height above
the lip only has an effect on the liquid recovery when the liquid fraction varies significantly
with height. At greater foam heights, both curves asymptote to the value of Ql given by
equation (16).

It should be noted that, in general, experimental foam columns do not show a constant
water recovery with foam height. This is because the average bubble size usually increases
with height, due to coarsening or coalescence, resulting in a decrease in water recovery as the
foam height increases. The effect of even small variations in bubble size on liquid recovery
can be significant, as will be shown in the following section.

4.2. The effect of bubble size on water recovery

A second variable that affects the liquid recovery is the bubble size. The full model was solved
using the conditions from table 1, but with varying bubble size, in order to calculate the liquid
overflow rate. Figure 5 shows the liquid flowrate from the overflowing foam column when the
bubble size in the foam is varied from 0.5 to 5 mm. Figure 5 also shows the liquid flowrate
predicted by the asymptotic solution (equation (16)). Figure 5 shows that the effect of the
bubble size on water recovery is far more significant than the effect of foam height.

Figure 5 further shows that the maximum asymptotic value for the liquid flowrate provides
a very good estimate for the water recovery above a certain critical bubble size. Below this



1570 S J Neethling et al

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
at

er
 R

ec
ov

er
y 

(m
l/m

in
)

Height of Foam below Lip (m)

2 cm above lip 1 cm above lip

Figure 4. Water recovery from a stable foam as a function of foam height. Two different foam
heights above the overflow lip are shown.

0

20

40

60

80

100

120

140

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

Bubble  Diameter (m )

L
iq

ui
d 

Fl
ow

ra
te

 (
m

l/m
in

)

Maximum  Asymptotic  ValueFull Numerical Solution

Figure 5. Water recovery from a stable foam as a function of bubble size.

critical bubble size, however, the maximum asymptotic value and the results of the numerical
solution of the full model diverge.

The reason for this deviation is as a result of the value of A at the liquid–foam interface.
For A to approach the asymptote, it must have a value greater than the asymptotic value given
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by equation (15) at the interface. As the bubble size decreases, the value of A at the liquid
foam interface also decreases, while the minimum asymptotic value of A is unaffected. The
critical bubble size at which A at the liquid foam interface is less than the minimum asymptotic
value can be obtained from equation (17), and a suitable geometric relationship between λ and
the bubble diameter. For these calculations, the foam is assumed to be a mono-dispersed
Kelvin foam, which implies that all the bubbles are tetrakaidecahedra and λ = 1.71/d2

b . If
the foam were poly-dispersed, the proportionality in the relationship between λ and db would
change and would be dependent on the degree of poly-dispersity, but the rest of the equations
developed in this paper remain unaffected.

λCritical = 2k1εInter f ace

vg
. (18)

For the conditions in table 1 equation (18) yields a critical bubble diameter of 0.995 mm,
which is in excellent agreement with the point in figure 5 where the asymptotic and the full
solutions diverge.

For bubble sizes smaller than the critical size, A starts below the minimum asymptote. In
this case, equation (6) indicates that there exists a value of Ql for which the gradient of A at the
interface can be zero or small. If the gradient is negative at the interface, it will become more
negative higher in the foam, and at an increasing rate. If, however, the gradient is small at the
interface, the Plateau border area will not change significantly with height, up to the point at
which A decreases rapidly to match the boundary condition at the overflow lip. This indicates
that for bubble sizes less than the critical value, the entire foam will have essentially the same
value of ε as at the liquid–foam interface, except for a small region below the top surface.

A simple expression exists for the recovery of liquid when the bubble size is below the
critical size determined from equation (18):

Ql = εInter f ace AColumn

(
vg − k1εInter f ace

λ

)
. (19)

Equation (19) is obtained by ignoring the gradient term in equation (5) and using A at
the liquid–foam interface. This equation has near perfect agreement with the full solution for
bubble sizes below the critical size.

It should be noted at this point that equations (18) and (19) are based on models for foam
that have a low liquid fraction (�4%). The general argument, however, remains valid.

4.3. The behaviour of unstable foams

The focus of this paper thus far has been the behaviour of totally stable foams that do not have
coarsening of the bubble size in the foam, or bursting on the upper surface. In this section, the
bursting limitation will be relaxed, but the bubbles in the foam will still be considered not to
coalesce or grow by diffusion.

The fraction of air entering the foam that overflows the lip as unburst bubbles will be
referred to as α. Equation (6) remains the governing equation for foam below the overflow
lip; however, the foam above the lip and the top boundary condition require modification.
Equation (8) for the rate of removal of liquid remains valid, though equations (9) and (10)
must be modified to include α:

vg(out)lliphOver f low = vg(in) AColumnα (20)

vg = vg(in)

(
h f oam − y

hOver f low

α + (1 − α)

)
. (21)
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Substituting and expanding results in the governing equation for the foam above the overflow
lip,

d2 A

dy2
=

−2k1 A dA
dy − k2

2
√

A
( dA

dy )2 + vg(in)

(
h f oam−y
hOver f low

α + (1 − α)
)

dA
dy

k2

√
A

. (22)

Equation (22) reverts to (13) when α is unity.
The boundary condition is obtained by applying equation (1) at the upper surface of the

foam, and noting that the velocity of the liquid through the top surface is zero, but that the gas
velocity depends on α. This yields(

d A

dy

)
T op

= −k1

k2
A

2
3
T op +

vg(in)

k2
(1 − α)A

1
2
T op. (23)

4.4. Asymptotic relationships

Figure 4 showed that the asymptotic overflow liquid flowrate is rapidly approached as the
foam height increases, and when there is no surface bursting of the foam. As the bursting rate
increases (α decreases), the column height at which the liquid flowrate asymptotes becomes
larger.

There are two operating regimes, depending on whether the liquid content asymptotes
to a constant value or not: first, the regime in which the foam surface boundary condition
(equation (23)) is satisfied when the gradient of A at the surface is appreciable, and second,
the regime in which the boundary condition is satisfied when the gradient is arbitrarily small.
In the first regime, the value of A at the upper surface is less than the minimum asymptotic
value; in the second it is not.

The second regime is described by setting the gradient of A to zero in equation (23), and
limiting A to be greater than the minimum asymptotic value:

k1

k2
A

3
2
T op = Vg(Inlet)

k2
(1 − α)A

1
2
T op and (24)

(from equation (15)) A � vg

2k1
. (25)

Solving simultaneously shows that the second regime occurs when α = 1
2 . The asymptotic

liquid flowrate that is approached as the foam height increases is the following in the two
regimes:

if α < 1
2 : Ql = AColumnv

2
gλ

 k1
(1 − α)α (26)

if α � 1
2 : Ql = AColumnv

2
gλ

4k1
. (27)

Equation (26) is a combination of equations (24), (20) and (8), noting that if equation (23)
is satisfied with a negligible gradient of A, then A is virtually constant over the entire region
of the overflow. Equation (27) is identical to (16).

The first thing to note is that, for a sufficiently deep foam,the liquid recovery is independent
of the bursting rate if α is greater than 1

2 . This means that more than half the bubbles must burst
at the top surface before there is an appreciable change in the water recovery from a column.
Since bursting and coalescence are often coupled, though, a system in which more than half
the bubbles burst at the top surface will often violate the assumption that the bubble size does
not vary with height. If the bubble size only changes slowly with height, then equations (26)
and (27) could still be used with caution. The bubble size used to calculate λ must be the
bubble size at the lip if α > 1

2 , else it must be the average size flowing over the lip.
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Figure 6. Image of the flowing bubbles in the foam column (divisions on the scale on the right-hand
side of the column are 1 mm).

5. Experimental investigation

In order to investigate the practical applicability of the equations developed, an experimental
investigation was carried out. This involved varying the air rate into the foam, as well as the
height of the foam. The bubble size was not varied because of the difficulties in obtaining a
range of mono-dispersed bubble sizes.

These experiments were carried out using a column of circular cross-section with a 1.4 cm
internal diameter. The bubbles were produced using a glass frit that yielded a bubble size of
about 1 mm. The exact size is hard to obtain, though it did not vary noticeably in the range
of air rates used in these experiments. The column consisted of slotted together lengths of
tube that allowed for the foam height to be varied. The reservoir of solution was large (about
20 l) and the foam was recycled back into it so fractionation of surfactant between the bulk
and the foam is not a problem. Figure 6 shows an image of the flowing foam taken through
the side of the column, which gives an indication of the bubble size, as well as demonstrating
the mono-dispersed nature of the bubbles.

The column used a regulated and measured air supply. The foam overflows the top of the
column and re-circulates back into the solution reservoir until steady state is reached (figure 1).
The entire overflow of the column is collected for a fixed period to determine the overflow
liquid rate.

It could be observed visually that the foam overflowing at the top surface was appreciably
drier than the foam seen through the clear walls of the column. Except for the region near
the liquid/foam interface and near the overflow lip, no appreciable variation in liquid content
with height was observed. This is in line with the model prediction (see figure 2). Within the
column the foam was totally stable, with no coalescence observed. The highly mono-dispersed
nature of the bubbles, coupled with the comparatively small residence times in the column,
meant that no appreciable amount of diffusion driven coarsening was observed, with no visible
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difference in bubble size, as seen through the walls, between the bottom and top of the column.
This means that the experiment fulfilled the assumption of a stable foam.

At the top surface, though, a small amount of bursting was observed, possibly due to
the low liquid content coupled with evaporation and dust from the environment. The amount
of bursting was very small, though, and substantially less than the 50% that would result in
equation (27) becoming invalid.

5.1. Air rate

Equation (27) (and (16)) predicts a power law relationship between liquid flow rate and gas
flowrate, with an exponent of two. When these two values are plotted against one another
(figure 7), the fit to a power law is excellent and the value of the exponent obtained from the
least squares fit is very close to two (1.97). In these experiments the foam height was 80 cm.

A similar power law relationship is seen in the work of Verbist et al (1996) for the forced
drainage of liquid through a foam. In that work it was found that the volumetric flowrate of the
liquid relative to the foam (Ql,Rel ) was proportional to the velocity of the wavefront squared.
The wavefront velocity, in turn, is equal to the velocity of the liquid relative to the foam (vl,Rel ).
The full expression is as follows:

Ql,Rel = v2
l,RelλAColumn

k1
. (28)

This equation also holds in this work if the foam is sufficiently deep that the liquid content
of most of the foam is near that of the asymptote. This equation, while similar to equations (16)
and (27), is not identical. The main difference is that in the rest of this work, including
equations (16) and (27), the liquid velocity quoted is not the velocity of the liquid relative to
the foam, but rather the velocity of the liquid relative to the stationary column:

vl,Rel = vg − vl . (29)
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Figure 8. Experimental relationship between foam height and water recovery at a constant air rate.

Equation (28) can thus be written as follows:

(vg − vl)Aλ = (vg − vl)
2λAColumn

k1
. (30)

In order for both equations (30) and (27) to be valid, the velocity of the liquid relative
to the column (in the region where it is asymptotic) and the velocity of the gas relative to the
column must be proportional to one another. Combining equations (7), (16) and (17) gives the
following result:

vl = 1
2vg . (31)

That the liquid velocity is proportional to the gas velocity is probably the most logical outcome
for a flowing column of foam, but it is not inherently true of all foam columns. For instance,
if more than half the bubbles burst at the top surface and the rate of bursting depends on the
gas velocity, then the liquid and gas velocities will not be proportional to one another. This,
in turn, will mean that the simple squared power law between liquid flowrate and gas velocity
will not hold in that case.

It is interesting to note that, near the asymptote, the relationship between the velocity of
the liquid (actual, rather than superficial) and that of the gas does not depend on the physical
properties of liquid, such as viscosity and density. The liquid fraction and flowrate, though,
do depend very strongly on the physical properties of the fluid.

5.2. Foam height

The second variable investigated experimentally was the effect of foam height on water
recovery. Figure 3 shows that the full numerical solution predicts that an asymptotic water
recovery will be approached very rapidly as foam height is increased. We were unable
to investigate very shallow foams, but over a very wide range of greater foam heights no
appreciable change in the water recovery is observed, which is exactly in line with the model’s
predictions. In figure 8, the gas rate was maintained at a value of 50 ml min−1, while the foam
height was varied.
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6. Conclusions

This paper has produced a simple equation for obtaining the amount of liquid that flows out
of a stable flowing foam in a column. This equation is the value of the liquid recovery that is
rapidly approached as the foam height increases. For these deeper foams, the way in which
the foam flows over the top of the column does not impact the result. For shallow froths, the
flow profile over the lip does impact the water recovery and a set of one-dimensional equations
were produced to solve the problem in this situation.

The lack of dependence of water recovery on foam height, above a certain height, was
experimentally verified. Further, the predicted power law exponent between the water rate and
gas rate of two was experimentally found.
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